Menu bar

12/01/2016

MA6251 MATHEMATICS – II -Anna University(Free Download Notes)

MA6251                       MATHEMATICS – II                                      L T P C 3 1  0  4
OBJECTIVES:
To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.
To acquaint the student with the concepts of vector calculus needed for problems in all engineering disciplines.
To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat
conduction, elasticity, fluid dynamics and flow the of electric current.
To make the student appreciate   the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I             VECTOR CALCULUS                                                                                           9+3
Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green‟s theorem in a plane, Gauss divergence theorem and Stokes‟ theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds.

UNIT II            ORDINARY DIFFERENTIAL EQUATIONS                                                  9+3
Higher order linear differential equations with constant coefficients – Method of variation of parameters  –  Cauchy‟s  and  Legendre‟s  linear  equations  –  Simultaneous  first  order  linear equations with constant coefficients.

UNIT III            LAPLACE TRANSFORM                                                                                 9+3
Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of  unit step function and impulse functions  – Transform of  periodic functions. Inverse Laplace transform -Statement of Convolution theorem  – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using  Laplace transformation techniques.

UNIT IV          ANALYTIC FUNCTIONS                                                                                   9+3
Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z2, ez and bilinear transformation.

UNIT V           COMPLEX INTEGRATION                                                                                 9+3
Complex integration – Statement and applications of Cauchy‟s integral theorem and Cauchy‟s integral formula – Taylor‟s and  Laurent‟s series  expansions  –  Singular  points  –  Residues  – Cauchy‟s residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).
TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
The subject helps the students to develop the fundamentals and basic concepts in vector calculus, ODE, Laplace transform and complex functions. Students will be able to solve problems related to engineering applications by using these techniques.

TEXTBOOKS:
1.  Bali N. P and Manish Goyal, “A Text book of Engineering Mathematics”, Eighth Edition, Laxmi Publications Pvt Ltd.,2011.

st
2.  Grewal. B.S, “Higher Engineering Mathematics”, 41
2011.

REFERENCES:

Edition, Khanna Publications, Delhi,

1.  Dass,     H.K.,     and     Er.     Rajnish     Verma,”     Higher     Engineering     Mathematics”,
S. Chand Private Ltd., 2011
2.  Glyn   James,   “Advanced   Modern   Engineering   Mathematics”,   3rd     Edition,   Pearson
Education, 2012.
3.  Peter  V.  O‟Neil,”  Advanced Engineering  Mathematics”,  7th  Edition, Cengage  learning,
2012.
4.  Ramana B.V, “Higher Engineering Mathematics”, Tata McGraw Hill Publishing Company, New Delhi, 2008.
5.  Sivarama Krishna Das P. and Rukmangadachari E., “Engineering Mathematics” Volume II,
Second Edition, PEARSON Publishing, 2011.